Sur quelques nouveaux oxydes mixtes de strontium et d'éléments de transition du type K₂NiF₄

J. C. JOUBERT, A. COLLOMB, ET D. ELMALEH

Laboratoire d'Electrostatique et de Physique du Métal, C.N.R.S., Grenoble, France

G. LE FLEM ET A. DAOUDI

Laboratoire de Chimie Minérale et Structurale de la Faculté des Sciences de Bordeaux, France

ЕТ

G. OLLIVIER

Centre d'Etudes Nucléaires de Grenoble, France

Received April, 11, 1970

Plusieurs nouveaux composés ayant une structure du type K_2NiF_4 ont été préparés: SrLnFeO₄ (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb), SrLnCrO₄ (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy).

Les paramètres cristallins ont été déterminés. La structure de SrNdFeO₄ a été affinée en utilisant des données de diffraction neutronique et de diffraction X. Aucun ordre n'apparaît entre les ions Sr^{2+} et Nd^{3+} dans les sites de coordinence 9.

Several new compounds with K_2NiF_4 structure have been prepared, namely: SrLnFeO₄ (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb), SrLnCrO₄ (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy). The cell parameters are given. The structure of SrNdFeO₄ was refined, using X-ray and neutron diffraction. No order exists between Nd³⁺ and Sr²⁺ on the 9 coordinated sites.

Introduction

L'intérêt considérable que suscitent depuis quelques années les fluorures doubles du type K_2NiF_4 à structure magnétique bi-dimensionnelle (1-8) nous a incités à rechercher des oxydes mixtes isotypes comportant des ions tels que Fe³⁺, Cr³⁺, Mn³⁺, etc., dans les sites octaédriques. On pouvait en effet supposer que de tels composés, tout en ayant un comportement magnétique comparable aux fluorures, posséderaient des températures d'ordre très supérieures. La structure type K₂NiF₄ étant formée partiellement de blocs bien définis de structure pérovskite et de formule KNiF₃, nous avons essayé de remplacer ces blocs par des blocs oxygénés de formule LnAO₃, où Ln représente un élément de la série des terres rares, A³⁺ étant un cation trivalent tel que Fe³⁺, Al³⁺, Ga³⁺, Cr³⁺, Mn³⁺, etc. Dans un premier temps, nous avons simplement remplacé le groupement KF constituant le reste de la structure par SrO, réalisant le schéma de substitution simple:

$$KNiF_3 + KF = K_2NiF_4,$$

$$Ln^{3+}Fe^{3+}O_3 + SrO = Ln^{3+}Sr^{2+}Fe^{3+}O_4.$$

Nous avons ainsi réussi à préparer de nouveaux oxydes mixtes possédant la structure type K_2NiF_4 :

 $LnSrFeO_4$ avec Ln = La, Pr, Nd, Sm, Eu, Gd, Tb, $LnSrCrO_4$ avec Ln = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy.

Préparation des Échantillons

Tous les composés ont été obtenus par action d'un léger excès de carbonate de strontium $SrCO_3$ sur un mélange équimoléculaire des oxydes A_2O_3 et Ln_2O_3 à 1350°C sous courant d'oxygène pendant une période de 60 heures entrecoupée de 4 à 5 broyages. L'excès de $SrCO_3$ est destiné à compenser la légère volatibilité de l'oxyde SrO à cette température. Les composés du lanthane, du praséodyme et du néodyme ont été obtenus très purs. Dans le cas du samarium, de l'europium et du gadolinium, certains échantillons présentaient des traces d'impuretés (Ln_2O_3 ou $LnFeO_3$) visibles seulement sur les clichés de chambre à focalisation.

Jusqu'ici aucun composé n'a été obtenu pour les éléments allant du dysprosium au lutétium. Cette lacune s'explique aisèment par le fait que le facteur de tolérance de la structure K_2NiF_4

$$t = r_A + r_0 / (r_B + r_0) \sqrt{2}$$

ne doit pas être inférieur à 0,83 (9).

Paramètres Cristallins des Phases Obtenues

Ils sont rassemblés dans le Tableau 1.

TABLEAU 1

PARAMÈTRES CRISTALLINS DES COMPOSES OBTENUS

Composés :	<i>a</i> (Å) ± 0,002	c(Å) ± 0,003	dx	$V(Å^3)$
SrLaFeO4 (10)	3,862	12,707	6,07	189,5
SrPrFeO ₄	3,838	12,597	6,23	185,5
SrNdFeO₄	3,846	12,594	6,27	186,3
SrSmFeO₄	3,843	12,478	6,45	184,3
SrEuFeO₄	3,841	12,471	6,49	184
SrGdFeO₄	3,853	12,554	6,50	186,4
SrTbFeO₄	3,825	12,507	6,65	183
SrLaCrO ₄ (10)	3,487	12,501	6,16	185
SrPrCrO ₄	3,836	12,377	6,28	182,1
SrNdCrO₄	3,834	12,360	6,36	181,7
SrSmCrO₄	3,822	12,264	6,56	179,2
SrEuCrO₄	3,823	12,281	6,59	180,1
SrGdCrO₄	3,823	12,263	6,68	179,2
SrTbCrO₄	3,815	12,217	6,76	177,8
SrDyCrO ₄	3,814	12,204	6,84	177,5

Affinement de la Structure du Composé SrNd³⁺Fe³⁺O₄

Afin de pouvoir donner une interprétation valable des propriétés magnétiques obtenues pour ces composés (celles-ci feront l'objet d'une prochaine publication), il était nécessaire de connaître avec précision la répartition des cations à l'intérieur de la maille, et en particulier de savoir si les cations Sr^{2+} et Ln^{3+} situés dans les sites de coordinence 9 occupaient ou non la même position cristallographique. Nous avons donc effectué un affinement de la structure de la phase $SrNdFeO_4$, en utilisant à la fois des données de diffraction neutronique et de diffraction X (K α Co). Les réflexions observées appartenant toutes à un groupe I, une répartition ordonnée des cations Sr²⁺ et Ln³⁺ équivalente à celle observée dans les composés de formule LnNaTiO₄ (11) était exclue. Les seules extinctions observées (k + k + 1 = 2n) nous conduisent à attribuer à la structure l'un des deux groupes d'espace I 4/mmm ou I 4 mm, avec trois modèles de répartitions possibles des cations (Z = 2):

 (1°) 2 Sr²⁺ et 2 Nd³⁺ sont distribués statistiquement dans les mêmes sites cristallographiques (positions 4*e* de *I* 4/*mmm*) et il y existe un centre de symétrie.

 (2°) (2-2u) Sr²⁺ et 2u Nd³⁺ sont distribués statistiquement dans les sites (00z) de *I* 4 mm, (2-2u) Nd³⁺ et 2u Sr²⁺ étant distribués dans les sites (00z').

(3°) Les 2 Sr²⁺ et les 2 Nd³⁺ sont ordonnés, l'ordre conservant à la fois la maille et la symétrie corps centré: ceci peut être réalisé dans le groupe I 4 mm pour la distribution: Sr²⁺ en 2a (00z) et Nd²⁺ en 2a (00z').

Les intensités observées sur les diagrammes de diffraction neutronique et de diffraction X (Tableaux 2 et 3) ont été comparées aux intensités calculées pour les trois modèles ci-dessus. Les longueurs de Fermi utilisées sont:

$O:0,577 \cdot 10^{-12} \text{ cm}$	Fe:0,96 \cdot 10 ⁻¹² cm
$Sr: 0,65 \cdot 10^{-12} cm$	Nd:0,72·10 ⁻¹² cm

Seul le premier modèle a conduit à un accord satisfaisant, les facteurs de véracité aux rayons X

TABLEAU 2

Diagramme de Diffraction Neutronique du Compose $SrNdFeO_4$ à la Température Ambiante

hk l	I _{obse} Normalisée	
002	33	
101	12	
004	0	
103	29	
110	54	
112	18	
105 006	91	
114	45	
200	100	
202	12	

Spectre de Diffraction X du Composé $SrNdFeO_4$ (CoKa)

hk l	d_{calcd}	$d_{\rm obsd}$	$I_{\rm obsd}$	hk l	dcalcd	$d_{\rm obsd}$	Iobsd
002	6,30	6,31	3	121	1,704	1,705	6
011	3,679	3,678	21	116	1,662	1,661	14
004	3,148	3,149	15	024	1,641	1,641	21
013	2,836	2,837	100	107	1,630	1,630	21
110	2,720	2,720	65	123	1,592	1,591	36
112	2,497	2,496	5	008	1,574	1,574	5
015	2,107	2,107	24	125	1,420	1,420	24
006	2,099	2,099	34	026	1,418	1,418	24
114	2,058	2,059	34	118	1,362	1,362	17
020	1,923	1,923	35	220	1,360	1,360	17
022	1,839		0		,		

et aux neutrons étant respectivement de 7% et de 4%. Les Tableaux 4 et 5 permettent d'établir une comparaison entre les intensités observées et calculées dans le cas du premier modèle.

TABLEAU 4

ETUDE DE SINdFeO4 PAR DIFFRACTION NEUTRONIQUE Comparaison des Intensités Observées et Calculées (Sf et Nd en 4e du Groupe I 4/mmm)

hk l	$p F ^2_{\text{calcd}}$	$p F ^2_{\mathrm{obsd}}$	
002	4	4	
101	4	3	
004	~ 0	0	
103	10	13	
110	25	26	
112	11	11	
105 006	36 38	74	
114	37	38	
200	100	97	
202	14	12	

(Sr et Nd en 4e du Groupe I 4/mmm)					
hk l	$p F ^2_{\text{calcd}}$	$p F ^2_{obsd}$	hklp	F ² caled	$p F ^2_{obsd}$
002	~ 0	~ 0	215	75	70
101	11	9	206	15	17
004	8	9	118	67	74
103	76	74	220∫	0/	/4
110	63	53	222	~ 0	0
112	3	5	109	1	3
105]	40	50	301	6	8
006	40	40 30 00	0010	3	5
114	55	52	224]	()	()
200	72	61	217∫	63	62
202	~ 0	0	303	32	34
211	20	14	208]	07	90
116	32	35	310	80	80
204]		- (312	2	0
107	- 53	56	1110]		
213	100	96	305	58	67

TABLEAU 5

ETUDE DE STNdFeO4 PAR DIFFRACTION X

COMPARAISON DES INTENSITES OBSERVÉES ET CALCULÉES

Le Tableau 6 résume les positions cristallographiques occupées par les ions dans le groupe I4/mmm.

13

226

51

47

53

54

214

1011

Conclusion

800

12

Cette étude a permis de mettre en évidence l'existence de composés de formule $SrLnFeO_4$, $SrLnCrO_4$ (Ln = terre rare) de type K_2NiF_4 ; l'étude des composés voisins $CaLn^{3+}Fe$ (Ga, Cr...) O_4 est en cours.

La structure magnétique de certains de ces composés a été étudiée par diffraction neutronique

TABLEAU 6

POSITIONS DES ATOMES DANS LE GROUPE 14/mmm

2 Fe ³⁺	en 2 <i>a</i> 000	
2 Sr ²⁺ et 2 Nd ³⁺	en $4e \pm 00z$ ave	ec $z = 0.360 \pm 0.001$ (RX)
		$z = 0.359 \pm 0.002$ (neutrons)
4 O ₁	en 4 <i>c</i>	
4 O ₂	en 4 $e \pm 00 z'$	$z' = 0.172 \pm 0.003$ (RX)
		$z' = 0.168 \pm 0.003$ (neutrons)

à 4,2 K. Elle concorde avec les mesures de susceptibilité magnétique qui mettent en évidence le caractère essentiellement bi dimentionnel des interactions magnétiques. Les résultats feront l'objet d'une prochaine note.

Reconnaissance

Nous remercions la D.R.M.E. pour le soutien matériel qu'elle a apporté à cette étude.

Bibliographie

- 1. M. E. LINES, Phys. Rev. 164, 736-749 (1967).
- 2. D. J. BREED, Physica 37, 35-46 (1967).

- 3. G. DE VRIES, D. J. BREED, E. P. MAARSCHALL, AND A. R. MIEDEMA, J. Appl. Phys. 39, 1207–1208 (1968).
- V. J. FOLEN, J. J. KREBS, AND M. RUBENSTEIN, Solid State Commun. 6, 865–868 (1968).
- G. K. WERTHEIM, H. J. GUGGENHEIM, H. J. LEVINSTEIN, D. N. BUCHANAN, AND R. C. SHERWOOD, *Phys. Rev.* 173, 614–616 (1968).
- 6. E. LEGRAND AND A. VAN DEN BOSCH, Solid State Commun. 7, 1191–1194 (1969).
- 7. R. J. BIRGENEAU, H. J. GUGGENHEIM, G. SHIRANE, *Phys. Rev. Lett.* 22, 720–723 (1969).
- 8. M. E. LINES, J. Appl. Phys. 40, 1352-1358 (1969).
- 9. A. RABENAU AND P. ECKERLIN, Z. Anorg. allg. Chem. 303, 1-2, 103-104 (1968).
- 10. G. BLASSE, J. Inorg. Nucl. Chem. 27, 2683-2684 (1965).
- 11. G. BLASSE, J. Inorg. Nucl. Chem. 30, 656-658 (1968).